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Major challenges in bipolar disorder research 
On average, a 5-10 year gap still exists from the time of symptom onset to BD diagnosis 

(Berk et al., 2007). This delay may lead to greater illness severity, comorbidities, 

hospitalizations, suicide risk, and a detrimental impact on patients’ education, 

employment and quality of life (Judd & Akiskal, 2003; Keck et al. 2008; Altamura et al., 

2010). It is estimated that only 20% of patients with BD presenting with depression are 

properly diagnosed with BD in their first year seeking treatment (Goldberg et al., 2001). 

Individuals with BD have one of the highest suicide rates among psychiatric patients, 

with upwards of 50% of individuals with BD attempting suicide, and a rate of completed 

suicide ~20 times higher than the general population (Schaffer et al., 2015; Pompili et 

al., 2013; Grande et al., 2016).   

 

Individuals with BD often present with comorbidities, including other common psychiatric 

disorders (e.g., substance use, attention deficit hyperactivity, anxiety and personality 

disorders), as well as non-psychiatric disorders (e.g., diabetes, fibromyalgia, 

osteoporosis, metabolic syndrome, cardiovascular disease, endocrine disorders). All of 

these comorbid conditions create additional challenges for diagnosis, treatment and 

prognosis (Vieta et al., 2018.). For example, most patients with BD present with 

depressive episodes that are often clinically indistinguishable from those in major 

depressive disorder (MDD). While the DSM-5 criteria for depressive episodes in BD and 

MDD are the same, the extent to which the underlying biological markers of depressive 

symptoms in each disorder overlap or are distinct remains unknown. A number of subtle 

clinical aspects may help to differentiate them from one another at a group-wise level, 

including age of onset, episode duration/frequency, phenomenology such as atypical 

features, response to treatment, and comorbid substance use (Grande et al., 2016; 

Goodwin et al., 2008), but further studies in large, well-powered samples are needed.  

  

While many patients may achieve periods of remission, rates of recurrent mood 

episodes are high, even during treatment (Gitlin et al., 1995; Solomon et al., 1995; 



Perlis et al., 2006; Vázquez et al., 2015), with long-term, subthreshold symptoms 

commonly impeding full recovery. About two thirds of individuals with BD have global or 

selective neurocognitive deficits, including impaired executive functioning and verbal 

memory even in periods of remission (Rosa et al., 2012; Bourne et al., 2013; Martinez-

Aran & Vieta, 2015; Sparding et al., 2015, 2017), which can impact daily functioning 

(Depp et al., 2012). Although cognitive deficits are present even in the early stages after 

remission of the first manic episode (Torres et al., 2010), the magnitude of such deficits 

tends to be small. Further, cognitive deficits in early stages may be reversible if mood 

episodes can be prevented (Kozicky et al., 2014), suggesting early and optimal 

intervention as a critical goal in arresting potential BD neuroprogression. In BD patients 

with multiple mood episodes, although preliminary data supports the utility of 

cognitive/functional remediation (Lewandowski et al., 2017, Sanchez-Moreno et al., 

2017) and 5-HT7 antagonists (Yatham et al., 2017) in improving cognitive functioning, 

further work is needed.  

 

A key hurdle facing psychiatric research is the heavy reliance on linking categorical 

diagnostic labels to underlying biological measures (e.g., single nucleotide 

polymorphisms, plasma markers, neurotransmitters, regional brain volumes, etc.). While 

some progress has been made in associating current BD diagnostic constructs to 

biological markers, from genes to neurochemistry to brain structure to behavior, the 

current diagnostic labels, which discretely categorize groupings of complex and 

heterogeneous symptoms, remain difficult to map onto underlying pathophysiological 

mechanisms. For instance, based on DSM-5 criteria, there exist ~37,264 symptom 

combinations that would meet the minimal threshold for a BD-I diagnosis alone, not 

including BD-II or any specifier. Such heterogeneity, in the historical context of smaller 

underpowered studies, is a key factor complicating the search for replicable and 

generalizable BD biomarkers. For example, BD is highly heritable (~70%), with studies 

implicating a mosaic of common and rare genetic risk factors (Edvardsen et al., 2008; 

Toma et al., 2018). In the largest genome-wide association study to date (Stahl et al., 

2019), thirty common genetic variants exceeding genome-wide significance thresholds 

were shown to increase the risk for BD. However, all of the genetic risk markers 



combined account for only ~8% of the overall risk for BD. This indicates the presence of 

a high degree of polygenicity, hidden genetic signal and gene-environment interactions 

that have yet to be discovered.  

 

The current funding landscape for bipolar disorder research has further exacerbated the 

gaps in the field. Using the search term “bipolar disorder” in the United States Federal 

Reporter database, the federal government has provided $2.1 billion in funding for 

bipolar disorder projects from fiscal year 2008 to 2018. The search term “schizophrenia” 

yielded more than $7 billion in funding, and $2.7 billion allocated to the term “major 

depressive disorder” in the same time frame. Searching the database for “bipolar 

disorder”, and excluding “schizophrenia” and “depression”, generates only $1.1 billion, 

which likely represents funding specific to bipolar disorder from 2008 to 2018. 

Notwithstanding the importance of research on MDD and schizophrenia (SCZ), it is vital 

to move the BD field forward by elucidating unique symptomatology, etiology, 

progression and targeted treatments. Furthermore, a recent report from the UK Mental 

Health Research Funding mental health charity MQ (Woelbert, 2019) found that less 

than 3% of public contributions from 2014-2017 in the UK went to mental health 

research. Even with support from non-government organizations to supplement federal 

funding, additional investment in BD research is required to investigate this complex 

disorder and achieve reliable and robust breakthroughs which will permit improved 

diagnosis and support better treatment and prognosis. 
 
 

Classification of Bipolar Disorder (DSM-5)  
Bipolar I Disorder:  
Requires at least one manic episode. Typically includes depressive episodes but not 
required for diagnosis. 
 
Bipolar II Disorder:  
At least one hypomanic and one major depressive episode required for diagnosis. 
 
Cyclothymic Disorder: 
Depressive and hypomanic periods that do not meet criteria for major depression or 
hypomania for at least 2 years. 



 
Other Specified bipolar and related disorder: 
These disorders do not meet the criteria for BD-I, BD-II, or cyclothymia due to 
insufficient duration/severity of bipolar-like symptoms. For example, cyclothymia not 
lasting for 2 years, depressive episodes with short-duration hypomania, etc. 
 
Unspecified bipolar and related disorder: 
Other bipolar-like disorder including symptoms that do not meet full criteria for previous 
categories. 
 
Substance-, drug- or other medical condition-induced bipolar and related disorder: 
Includes symptoms of bipolar disorder such as mania and mood instability that are 
caused by any medication, substance or medical condition. Examples include 
amphetamine or cocaine-induced mania and hyperthyroidism.  
 
Specifiers: 
Additional details that characterize symptoms including “with rapid cycling”, “with mixed 
features”, “with anxious distress”, etc. 
 
*Note that the ENIGMA Bipolar Disorder Working Groups has performed analyses on 
BD-I, BD-II and other bipolar subtypes, including bipolar disorder not otherwise 
specified (BD-NOS), a subtype that was characterized by the 4th edition of the DSM, 
which has since been updated to “Other Specified” and “Unspecified” in the 5th edition 
of the DSM. 
 
 
 

Ongoing ENIGMA Bipolar Disorder Working Group Projects 
 

In-depth studies of altered brain morphometry, white matter 
connectivity and neurometabolites 

 
Subcortical shape analysis 
The ENIGMA Methods Core developed an advanced subcortical shape analysis 

technique in an effort to more finely map the spatial distribution of ROI-based alterations 

to subcortical structures reported in our initial study (Hibar et al., 2016). The ENIGMA 

Shape Analysis Pipeline (Gutman et al., 2015; 

http://enigma.ini.usc.edu/ongoing/enigma-shape-analysis/) derives local thickness 



(radial distance) and surface area expansion/contraction (Jacobian determinant) 

measures across thousands of points along a subcortical structure’s surface. The 

deficits in hippocampal, amygdala and thalamic volumes detected in our ROI-based 

analysis can now be interrogated on a more detailed level, revealing the topographic 

burden across underlying subfields or subcompartments with known structural and 

functional connectivity. Findings will provide more detailed mapping of case-control 

differences, as well as shape alterations associated with treatment, duration of illness 

and symptom severity. This technique may help guide more mechanistic investigations 

of distinct neuronal subpopulations in these structures and provide a better 

understanding of the complex subcortical pathophysiology in BD. 

 

The ENIGMA Shape Analysis Pipeline has been applied more broadly across the 

ENIGMA clinical working groups and has revealed complex patterns of local variation in 

schizophrenia (Gutman et al., 2019), major depression (Ho et al., 2020 this edition), 

addiction (Chye et al., 2019) and 22q11.2 deletion syndrome (Ching et al., 2020). 

ENIGMA BD working group efforts are underway (see vertex-wise machine learning 

below) to directly compare subcortical shape metrics across disorders, as fine-grained 

mapping may serve to better differentiate overlapping gross volume effects seen across 

psychiatric disorders.  

 
Mapping hippocampal subfield alterations 
In ENIGMA’s large-scale analyses of BD and SCZ, lower hippocampal volume is 

consistently one of the most prominent findings in affected individuals compared to 

healthy controls (Hibar et al., 2016; van Erp et al., 2016). Thus, the anatomically and 

functionally complex hippocampus could be a key target for understanding illness 

development and/or progression, but it is not clear how different hippocampal subfields 

are affected and how these finer-scale effects relate to BD pathophysiology. 

 

Postmortem and in vivo MRI volumetric studies of distinct hippocampal subcomponents 

– e.g., the cornu ammonis, subiculum and dentate gyrus – show mixed results, with 

mostly smaller subfield volumes reported in BD (Harrison et al. 2018; Haukvik et al., 



2015; Haukvik et al., 2018). Indeed, a prior meta-analysis showed smaller volumes 

across all subfields in BD compared to healthy controls (Haukvik et al., 2018). To date, 

it has been difficult to reproduce findings across studies. Automated hippocampal 

subfield segmentation is inherently difficult and factors such as small sample sizes, 

clinical heterogeneity (Janiri et al., 2019), BD subtypes, illness stage, alcohol use, illicit 

substances, and medication can affect hippocampal structure.  

 

Recently, through the development of an ex-vivo atlas, an automated hippocampal 

subfield segmentation algorithm for MRI scans was developed with improved accuracy 

(Iglesias et al., 2015), and made publicly available in FreeSurfer (version 6.0.0; 

http://www.freesurfer.net). ENIGMA has further developed standardized post-

processing and quality control pipelines for hippocampus subfield segmentation that are 

used across different ENIGMA working groups. We recently submitted the largest 

hippocampal subfields analysis in BD to date, pooling data from over 4,600 MRI scans 

(1,472 individuals with BD and 3,226 HC) from 23 sites worldwide (Haukvik et al., 

submitted). The project is also modeling secondary effects of diagnostic subtype, 

medication use, and clinical characteristics on hippocampal subfield volumes and 

provides valuable insights into the impact of BD on hippocampus subcomponents in the 

largest study of its kind. 
 
The role of obesity as a source of heterogeneity in bipolar disorder 
and underlying brain morphometry 
While subtle brain imaging alterations are frequently associated with BD on a group 

level, such changes are found only in some, but not all BD individuals. This 

heterogeneity indicates that additional clinical factors likely play a role in BD 

pathogenesis. However, specific risk factors for neurostructural alterations in BD remain 

mostly unknown. One potential source of brain alterations in psychiatric disorders is the 

comorbidity with medical conditions known to affect the brain. Obesity, which is 

prevalent in BD, is associated with brain imaging alterations in frontal and 

mesiotemporal regions (Garcia-Garcia et al., 2019), similar to those observed in BD. A 

genetic link between increased BMI and BD is supported by a recent large-scale study 



(Bahrami et al., 2020). We and others have demonstrated that obesity is an additional 

factor, which contributes to brain alterations in psychiatric disorders, including BD and 

first episode of SCZ (Bond et al., 2011, 2014; Kolenic et al., 2018). The presence or 

absence of obesity could explain why only some individuals with BD present with brain 

imaging alterations. Focusing on obesity may help to parse the neurostructural 

heterogeneity of BD and may hopefully help identify a modifiable risk factor for BD-

related brain alterations.  

 
Modeling polypharmacy effects on subcortical brain structures 
A question that repeatedly emerges when considering the neuroanatomical deviations 

associated with BD is the extent to which psychotropic medications such as lithium and 

antipsychotics may be driving the neuroanatomical abnormalities identified in case-

control studies. Substantial preclinical and clinical evidence points to lithium having 

neurotrophic effects (Quiroz et al, 2010, Hibar et al, 2018), whereas antipsychotic 

medications have been associated with reduced gray matter measures (Vernon et al, 

2012; Ho et al, 2011; Hibar et al, 2018). In a previous mega-analysis of ROI 

segmentation studies of BD (Hallahan et al, 2011), there was a strong association 

between lithium use and enlargement of the hippocampus and amygdala. In the 

subsequent ENIGMA meta-analysis employing automated segmentation of subcortical 

volumes, lithium use was associated with enlarged thalamic volumes in individuals with 

BD. However, these and several other prior studies (Bearden et al., 2008) usually 

compared participants taking lithium to those who were not or to healthy volunteers, 

with only some assessing the impact of related clinical factors such as concurrent 

medications and treatment response (Hajek et al., 2012, 2014; Van Gestel et al., 2019). 

The purpose of this further research initiative is to conduct a more fine-grained analysis 

of medication effects and their potential modulators on subcortical brain volumes in a 

large cohort of BD participants at the individual level. Using the ENIGMA-standardized 

cortical and subcortical measures, we are applying linear mixed-effect models to map 

complex medication effects on brain structure while accounting for individual-level 

confounds. While the current study does not take the place of a randomized clinical trial, 



the influence of polypharmacy (individuals taking multiple medications) and medication 

dose/duration on brain measures can provide important insights into BD treatment.  

Network-based white matter connectivity 
Building on decades of neuroanatomical, molecular and pharmacological studies on the 

underlying neurotransmitter systems at play in mood lability (Cade, 1949; Janowsky et 

al., 1972; Hajek et al, 2005; Strakowski et al., 2012), network-based connectivity 

(Bullmore & Sporns, 2009) has emerged as a powerful tool for studying complex 

behavioral, cognitive and clinical aspects of BD. White matter topology can be 

examined as maps of non-tensor based tractography weightings (Jeurissen et al., 2011) 

connecting cortical and subcortical brain regions. Previous studies have revealed 

altered brain integration and segregation in BD including connectivity deficits of fronto-

limbic and basal ganglia regions (Perry et al., 2018; Nabulsi et al., 2019). However, 

such connectivity studies require high statistical power, especially when pursuing 

precise brain node definitions (Zalesky et al., 2010). As white matter connectivity graphs 

become more refined, thanks to increased data resolution and advanced diffusion 

acquisitions, data-driven and permutation-based corrections are critical to balance 

improved anatomical sensitivity with aforementioned limitations of previous, small-scale 

neuroimaging studies in BD (Zalesky et al., 2016). In an effort to better understand the 

underlying network-based mechanisms of mood instability in BD, we are currently 

applying these advanced connectivity analysis methods to the ENIGMA Bipolar 

Disorder Working Group diffusion-weighted samples. 
 
Proton magnetic resonance spectroscopy (1H-MRS) for the analysis 
of brain metabolites 
Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive technique used 

to measure brain metabolites in vivo, such as N-acetylaspartate, creatine (NAA), choline 

(Cho), glutamate (Glu), glutamine, glutamate+glutamine (Glx), myo-inositol (MI) and 

gamma aminobutyric acid (GABA) (Buonocore & Maddock, 2015). Despite the growing 

literature on 1H-MRS data in BD, previous systematic reviews and meta-analyses have 

mainly focused on specific neurometabolites such as Glu (Chitty et al., 2013; Gigante et 



al., 2012; Yüksel & Ongur, 2010), GABA (Chiapponi et al., 2016; Romeo et al., 2018; 

Schür et al., 2016), Cho (Kraguljac et al., 2012; Yildiz-Yesiloglu & Ankerst, 2006) and MI 

(Silverstone et al., 2005). Given the historically small samples, results may have not 

been reported by brain region, mood state or account for complex factors such as 

medication. 

 

To address these limitations, the ENIGMA Bipolar Disorder Spectroscopy Project is 

gathering data from research groups around the world to meta-analyze neurometabolite 

levels by mood episode, brain ROI (prefrontal, anterior cingulate, hippocampus, etc.) 

and examine associations with common comorbidities and medications. This effort 

represents one of the first multisite studies of brain metabolites across the ENIGMA 

consortium and is helping to inform future large-scale efforts of this kind. 

 

 
Brain change and accelerated aging 

 
Mapping longitudinal brain change  
Although cross-sectional brain imaging studies show that BD is associated with 

structural brain abnormalities (Hibar et al., 2016, 2018; Hanford et al., 2016; Abe et al., 

2016), it remains unknown whether such abnormalities represent static traits of BD or 

pathological changes over time. This is important, as the clinical course of BD appears 

to be progressive for some patients (Passos et al., 2016; Cardoso et al., 2015; Barbosa 

et al., 2014; Schneider et al., 2012). However, it has not been unambiguously 

established that brain structure actually changes during the course of illness in BD, 

beyond the changes that would be expected with normal aging (Najt et al. 2016; 

Weathers et al., 2018). This is because most brain imaging studies have been cross-

sectional in design, whereas longitudinal studies are scarce and usually investigate 

smaller samples. The ENIGMA BD Working Group Longitudinal Brain Change Project 

aims to overcome these specific limitations. 

 



By investigating cortical thickness, surface area, and subcortical volumes across two 

time points in a large, multicenter cohort of individuals with BD and HC, we aim to better 

understand the neuroprogressive nature of BD. We are employing a mega-analysis 

approach, using standardized ENIGMA protocols for longitudinal image processing with 

FreeSurfer (Reuter et al., 2012) in combination with linear mixed effects models (Bernel-

Rusiel et al., 2013a, 2013b) and change rate analyses. 

 

We expect that subgroups of individuals with BD will show abnormal changes in fronto-

temporal cortices, as well as subcortical areas, such as the hippocampus and thalamus. 

Structural decline may be accelerated by the occurrence of manic episodes (Ekman et 

al., 2010) and may be countered by lithium use (Abe et al., 2015, Abe et al., 2019). By 

relating brain change to clinical variables, such as mood episodes and medication use, 

we hope to improve our understanding of the development and clinical trajectory of BD. 

Beyond this, future large-scale studies with multiple time-points per individual are 

needed to allow for modelling of nonlinear, individual-level trajectories of brain change. 
 
Modeling accelerated brain aging 
Many of the brain alterations discovered by the ENIGMA BD Working Group, when 

comparing BD with age-matched healthy individuals, are similar to those seen in typical 

aging (e.g., lower cortical thickens and hippocampal volume, decreased integrity of 

white matter microstructure, etc.). These findings, along with those from other age-

related measures, have suggested that BD might involve advanced and/or accelerated 

aging processes (Rizzo et al., 2014). Using brain MRI measures, studies have begun to 

use machine learning approaches to estimate an individual’s ‘brain age’ and compare 

that to their chronological age, yielding a brain-predicted age difference (brain-PAD). 

Indications of apparent accelerated brain aging based on a larger brain-PAD have been 

found in several psychiatric disorders including SCZ, which may be related to cognitive 

decline (Franke & Gaser, 2019). Using ENIGMA-standardized brain measures, several 

ongoing studies have incorporated large samples of healthy control data to derive 

generalizable models of normative ‘brain age’ (Cole et al., 2017, 2019), using measures 

such as cortical thickness and surface area — brain metrics known to be under the 



influence of differential neurodevelopmental genetic factors (Winkler et al., 2009; 

Panizzon et al., 2009). 

  

In two forthcoming studies, the ENIGMA BD working group has collaborated with the 

ENIGMA MDD Working Group to develop a robust, multivariate estimator of brain age 

(Han et al., 2020). Measures of subcortical volume, cortical thickness and surface area 

were analyzed from 952 male and 1,236 female MDD controls using ridge regression to 

develop a model to predict chronological age. This model was validated within the MDD 

sample and then tested for generalizability to the ENIGMA BD Working Group’s healthy 

controls to determine whether the mean absolute error (i.e., difference between 

chronological age and predicted brain age) was comparable to that of the HC 

participants from the MDD test sample. Final measures of Brain-PAD were calculated 

for the test samples. Importantly, the Brain-PAD models (separate for male and female) 

will be made available to the wider research community whereby users can derive 

Brain-PAD measures for their own research samples (https://old.photon-

ai.com/enigma_brainage/). 

  

Work is underway to evaluate the association between Brain-PAD measures and 

clinical characteristics within the ENIGMA BD Working Group including duration of 

illness, symptom severity and medication status. Working groups across the ENIGMA 

consortium are beginning to derive Brain-PAD measures based on this model, resulting 

in a number of future large-scale psychiatric brain age studies. Future work will include 

evaluating the extent of accelerated brain aging across a range of disorders as well as 

associations with polygenic risk (Kaufmann et al., 2019). 

 
 

Advanced machine learning for improved classification and 
individual-level prediction 

 
Vertex-wise machine learning  
Previous machine learning on ROI-based measures has highlighted the potential of 

brain morphology to perform diagnostic classification of BD (Nunes et al., 2018). 



Though classification accuracies based solely on engineered ROI features are 

promising, they fall short of the 80% positive predictive threshold sometimes thought to 

be clinically relevant (Savitz et al., 2013). One possible way forward is to use enhanced 

brain morphological features such as vertex-wise cortical and subcortical shape metrics, 

which provide thousands of local structural features across the brain. Such measures 

may include vertex-wise thickness, surface area, curvature, and sulcal features from the 

cerebral cortex. More detailed modeling of subcortical structures includes the analysis 

of vertex-wise radial distance (thickness), and the Jacobian determinant of the surface 

mesh (a measure of the surface ‘dilation’ or ‘contraction’ relative to an average 

template), as detailed above in the shape analysis section (Gutman et al., 2015). 

Relative to the ROI features, which average morphometric features across larger brain 

regions, vertex-wise metrics may improve discriminative power by providing finer-

grained information on brain structure. However, using such detailed features comes at 

a cost, and the “curse of dimensionality” presents a challenge in pattern classification of 

such detailed features. The higher the sampling of the morphometric features, the 

smaller the distance is between individual sample points in the high-dimensional input 

feature space. The development of more advanced machine learning approaches using 

feature selection, representation learning and the application of deep learning may 

increase the accuracy of BD classification problems. Moreover, data driven clustering or 

biotyping (Drysdale et al., 2017; Dinga et al., 2019) may provide meaningful diagnostic 

subtypes that better correlate with symptom profiles and improve individual-level 

predictions.  
 
 

Prediction of pharmacological treatment outcomes 
In BD, optimal pharmacological treatment can vary between individuals and has even 

been shown to induce alternate mood states (e.g., antidepressants may induce mania). 

The creation of tools to aid physicians in matching patients with proper treatment is of 

utmost interest. The ENIGMA BD Working Group is currently exploring how ENIGMA-

standardized MRI-derived brain features may be potentially applicable for possible 

clinical use including treatment selection. 

 



Common medications for the treatment of BD have documented morphometric effects 

on brain structure (see main text) and the extent to which these brain features may 

provide insight into positive treatment responses is unknown. Of course, an optimal 

study of the relationship between brain measures and the adequacy of different 

treatment regimens would require a large-scale, longitudinal, randomized clinical trial. 

Here, we aim to provide some clues from an analysis of the large-scale cross-sectional 

dataset pooled by the ENIGMA BD Working Group and are training machine-learning 

models to predict which medications individuals with BD were prescribed at the time of 

their scan based on cortical and subcortical morphometric features. While limitations of 

such an approach are well recognized (e.g., cross-sectional design, the assumption that 

the medication at time of scan was an optimal treatment, etc.), using brain structure to 

predict treatment may provide much needed insights into brain features that might serve 

as potential biomarkers for tracking treatment response and guiding future targeted 

treatment strategies. 

 

Multimodal classification and unsupervised clustering in multimodal 
MRI data  
Supervised machine learning based on multiple MRI modalities may improve 

classification performance (Arbabshirani et al., 2017). Building off of the first machine 

learning analysis from the BD Working Group (Nunes et al., 2018), we are currently 

applying a similar strategy to classify BD individuals from controls using diffusion-

weighted brain measures of white matter integrity (DTI) with the goal of incorporating 

resting-state fMRI (rsfMRI) data across sites. By fusing T1-based structural MRI, 

diffusion MRI and functional MRI data, we are working to apply unsupervised 

techniques (as forecast above) to derive biologically based clusters of individuals 

(Drysdale et al., 2017; Dinga et al., 2019) that may help tease apart BD heterogeneity in 

these large, multi-site samples. 
 
 
 
 



Comparing bipolar brain morphometry and gene expression across 
psychiatric disorders 

 

Multimodal structural and functional neuroimaging mediators of 
general intelligence across psychiatric disorders 
Impairment in general cognitive ability (g factor) is a key feature among affective and 

psychotic disorders (e.g., MDD, BD and SCZ), and influences the functional status of 

patients (Rock et al. 2014; Bora et al., 2015; Green et al., 2016). General cognitive 

ability is particularly relevant since it represents the integration of independent brain 

processes working in concert to solve problems (Deary et al., 2010). Further, altered 

connectivity between brain regions is thought to underlie most psychiatric disorders 

(Baker et al., 2014; Zhang et al., 2011). ENIGMA has provided advances in 

understanding brain abnormalities in psychiatric disorders (van Erp et al. 2016; Hibar et 

al., 2016; Schmaal et al., 2016), but a valid criticism of well-powered neuroimaging 

studies in general is that their findings could be considered correlational. Different 

neuroimaging modalities are analyzed separately, despite shared variance among 

neuroimaging phenotypes, leading to difficulties in interpreting multimodal associations. 

The release of large scale and deeply phenotyped neuroimaging samples such as the 

human connectome project and the UK Biobank now allows for dissection of advanced 

multimodal neuroimaging phenotypes and their relationship with general cognitive ability 

at a whole-brain scale. We aim to probe mechanistic multimodal relationships among 

functional and structural MRI phenotypes that are associated with general cognitive 

ability in thousands of individuals using our TFCE mediation software (Lett et al., 2017). 

Utilizing the immense statistical power of the ENIGMA worldwide initiatives for 

examining MDD, BD, and SCZ, we aim to identify specific neuroimaging biomarkers that 

mediate reduced general cognitive ability and are specific to these disorders. 

 
Virtual histology: Mapping cortical alterations to gene expression in 
bipolar disorder and beyond 
The relationship between in vivo MRI and ex vivo histology is a key challenge facing 

neuroimaging research (Paus, 2018). Understanding this gap essential if we are to 



understand how MRI-derived metrics relate to the underlying neurobiology. ENIGMA 

studies have revealed robust group differences in cortical thickness across several 

psychiatric illnesses, namely autism spectrum disorder (ASD), attention-deficit 

hyperactivity disorder (ADHD), BD, obsessive compulsive disorder (OCD), MDD and 

SCZ (Thompson et al., 2019). These macrostructural abnormalities within the cerebral 

cortex have yet to be fully understood at the level of histology and microstructure. 

  

Multiple working groups within the ENIGMA consortium are currently working together 

to apply the “virtual histology” approach, associating structural brain metrics such as 

cortical thickness group differences to cell-specific gene expression from the Allen 

Human Brain Atlas (Hawrylycz et al. 2012; Patel et al. 2018; Shin et al. 2017). To 

ensure representativeness of the inter-regional profiles of gene expression, only genes 

that have passed filtering for donor-to-median correlation and similarity with another 

independent atlas of gene expression (BrainSpan) are used for subsequent analysis 

(Patel et al. 2018; Shin et al. 2017). Cell-specific gene lists are derived from single-cell 

RNA sequencing work characterizing pyramidal cells, interneurons, astrocytes, 

microglia, oligodendrocytes, endothelial cells, pericytes, and ependymal cells. 

 

Group differences in cortical thickness across the 34 regions of the FreeSurfer Desikan-

Killiany atlas (Desikan et al. 2006) are currently being generated meta-analytically from 

linear models applied across the ENIGMA working group adjusting for age, sex and 

site-specific covariates. The study sample includes over 12,000 cases and 15,000 

healthy controls across the ENIGMA BD, ASD, ADHD, OCD, MDD and SCZ disorder 

working groups. Findings will help to better characterize the gene expression profiles 

underlying MRI-derived variations in cortical structure across these major 

neuropsychiatric disorders on an unprecedented scale.  

 

 

 

 

 



Supplement References 
 
Abe, C., Ekman, C. J., Sellgren, C., Petrovic, P., Ingvar, M., & Landen, M. (2016). Cortical 
thickness, volume and surface area in patients with bipolar disorder types I and II. J Psychiatry 
Neurosci, 41(4), 240-250. doi: 10.1503/jpn.150093 
  
Abe, C., Ekman, C. J., Sellgren, C., Petrovic, P., Ingvar, M., & Landen, M. (2015). Manic 
episodes are related to changes in frontal cortex: a longitudinal neuroimaging study of bipolar 
disorder 1. Brain, 138(Pt 11), 3440-3448. doi: 10.1093/brain/awv266 
 
Abe, C., Liberg, B., Song, J., Bergen, S. E., Petrovic, P., Ekman, C. J., . . . Landen, M. (2019). 
Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic 
Risk, Mania, and Lithium Use. Biol Psychiatry. doi: 10.1016/j.biopsych.2019.08.015 
 
Altamura, A. C., Dell'Osso, B., Berlin, H. A., Buoli, M., Bassetti, R., & Mundo, E. (2010). 
Duration of untreated illness and suicide in bipolar disorder: a naturalistic study. Eur Arch 
Psychiatry Clin Neurosci, 260(5), 385-391. doi: 10.1007/s00406-009-0085-2 
 
Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single subject prediction of brain 
disorders in neuroimaging: Promises and pitfalls. Neuroimage, 145(Pt B), 137-165. doi: 
10.1016/j.neuroimage.2016.02.079 
 
Bahrami, S., Steen, N. E., Shadrin, A., O'Connell, K., Frei, O., Bettella, F., . . . Andreassen, O. 
A. (2020). Shared Genetic Loci Between Body Mass Index and Major Psychiatric Disorders: A 
Genome-wide Association Study. Jama Psychiatry. doi:10.1001/jamapsychiatry.2019.4188 
 
Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T., Krienen, F., Buckner, R. L., & Ongur, D. 
(2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar 
disorder. JAMA Psychiatry, 71(2), 109-118. doi: 10.1001/jamapsychiatry.2013.3469 
  
Barbosa, I. G., Bauer, M. E., Machado-Vieira, R., & Teixeira, A. L. (2014). Cytokines in bipolar 
disorder: paving the way for neuroprogression. Neural Plast, 2014, 360481. doi: 
10.1155/2014/360481 
 
Bearden, C. E., Thompson, P. M., Dutton, R. A., Frey, B. N., Peluso, M. A., Nicoletti, M., . . . 
Soares, J. C. (2008). Three-dimensional mapping of hippocampal anatomy in unmedicated and 
lithium-treated patients with bipolar disorder. Neuropsychopharmacology, 33(6), 1229-1238. doi: 
10.1038/sj.npp.1301507 
 
Berk, M., Dodd, S., Callaly, P., Berk, L., Fitzgerald, P., de Castella, A. R., . . . Kulkarni, J. 
(2007). History of illness prior to a diagnosis of bipolar disorder or schizoaffective disorder. J 
Affect Disord, 103(1-3), 181-186. doi: 10.1016/j.jad.2007.01.027 
 



Bernal-Rusiel, J. L., Reuter, M., Greve, D. N., Fischl, B., Sabuncu, M. R., & Alzheimer's Disease 
Neuroimaging, I. (2013). Spatiotemporal linear mixed effects modeling for the mass-univariate 
analysis of longitudinal neuroimage data. Neuroimage, 81, 358-370. doi: 
10.1016/j.neuroimage.2013.05.049 
  
Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., Sabuncu, M. R., & Alzheimer's Disease 
Neuroimaging, I. (2013). Statistical analysis of longitudinal neuroimage data with Linear Mixed 
Effects models. Neuroimage, 66, 249-260. doi: 10.1016/j.neuroimage.2012.10.065 
 
Bond, D. J., Ha, T. H., Lang, D. J., Su, W., Torres, I. J., Honer, W. G., . . . Yatham, L. N. (2014). 
Body mass index-related regional gray and white matter volume reductions in first-episode 
mania patients. Biol Psychiatry, 76(2), 138-145. doi: 10.1016/j.biopsych.2013.08.030 
 
Bond, D. J., Lang, D. J., Noronha, M. M., Kunz, M., Torres, I. J., Su, W., . . . Yatham, L. N. 
(2011). The association of elevated body mass index with reduced brain volumes in first-
episode mania. Biol Psychiatry, 70(4), 381-387. doi: 10.1016/j.biopsych.2011.02.025 
 
Bourne, C., Aydemir, O., Balanza-Martinez, V., Bora, E., Brissos, S., Cavanagh, J. T., . . . 
Goodwin, G. M. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar 
disorder: an individual patient data meta-analysis. Acta Psychiatr Scand, 128(3), 149-162. doi: 
10.1111/acps.12133 
 
Bora, E. (2015). Developmental trajectory of cognitive impairment in bipolar disorder: 
comparison with schizophrenia. Eur Neuropsychopharmacol, 25(2), 158-168. 
doi:10.1016/j.euroneuro.2014.09.007 
 
Buonocore, M. H., & Maddock, R. J. (2015). Magnetic resonance spectroscopy of the brain: a 
review of physical principles and technical methods. Reviews in the Neurosciences, 26(6), 609–
632. http://doi.org/10.1515/revneuro-2015-0010 
 
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of 
structural and functional systems. Nat Rev Neurosci, 10(3), 186–198. doi: 
https://doi.org/10.1038/nrn2575 
 
Cade, J. F. (1949). Lithium Salts in the Treatment of Psychotic Excitement. Med. J. Austral., (2), 
349–352. https://doi.org/10.5694/j.1326-5377.1949.tb36912.x 
 
Cardoso, T., Bauer, I. E., Meyer, T. D., Kapczinski, F., & Soares, J. C. (2015). 
Neuroprogression and Cognitive Functioning in Bipolar Disorder: A Systematic Review. Curr 
Psychiatry Rep, 17(9), 75. doi: 10.1007/s11920-015-0605-x 
 
Chiapponi, C., Piras, F., Piras, F., Caltagirone, C., & Spalletta, G. (2016). GABA System in 
Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies. 
Frontiers in Psychiatry, 7, 61. http://doi.org/10.3389/fpsyt.2016.00061 



 
Ching, C. R. K., Gutman, B. A., Sun, D., Villalon Reina, J., Ragothaman, A., Isaev, D., . . . 
Bearden, C. E. (2020). Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: 
Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness. Am J 
Psychiatry, 177(7), 589-600. doi:10.1176/appi.ajp.2019.19060583 
 
Chitty, K. M., Lagopoulos, J., Lee, R. S. C., Hickie, I. B., & Hermens, D. F. (2013). A systematic 
review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity 
in bipolar disorder. European Neuropsychopharmacology : the Journal of the European College 
of Neuropsychopharmacology, 23(11), 1348–1363. 
http://doi.org/10.1016/j.euroneuro.2013.07.007 
 
Chye, Y., Mackey, S., Gutman, B. A., Ching, C. R. K., Batalla, A., Blaine, S., . . . Garavan, H. 
(2019). Subcortical surface morphometry in substance dependence: An ENIGMA addiction 
working group study. Addict Biol, e12830. doi: 10.1111/adb.12830 
 
Cole, J. H., & Franke, K. (2017). Predicting Age Using Neuroimaging: Innovative Brain Ageing 
Biomarkers. Trends Neurosci, 40(12), 681-690. doi: 10.1016/j.tins.2017.10.001 
 
Cole, J. H., Marioni, R. E., Harris, S. E., & Deary, I. J. (2019). Brain age and other bodily 'ages': 
implications for neuropsychiatry. Mol Psychiatry, 24(2), 266-281. doi: 10.1038/s41380-018-
0098-1 
 
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence 
differences. Nat Rev Neurosci, 11(3), 201-211. doi: 10.1038/nrn2793 
 
Depp, C. A., Mausbach, B. T., Harmell, A. L., Savla, G. N., Bowie, C. R., Harvey, P. D., & 
Patterson, T. L. (2012). Meta-analysis of the association between cognitive abilities and 
everyday functioning in bipolar disorder. Bipolar Disord, 14(3), 217-226. doi: 10.1111/j.1399-
5618.2012.01011.x 
 
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., ... & Albert, 
M. S. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI 
scans into gyral based regions of interest. Neuroimage, 31(3), 968-980. 
 
Dinga, R., Schmaal, L., Penninx, B., van Tol, M. J., Veltman, D. J., van Velzen, L., . . . 
Marquand, A. F. (2019). Evaluating the evidence for biotypes of depression: Methodological 
replication and extension of. Neuroimage Clin, 22, 101796. doi:10.1016/j.nicl.2019.101796 
 
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., . . . Liston, C. 
(2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. 
Nat Med, 23(1), 28-38. doi: 10.1038/nm.4246 
 



Edvardsen, J., Torgersen, S., Roysamb, E., Lygren, S., Skre, I., Onstad, S., & Oien, P. A. 
(2008). Heritability of bipolar spectrum disorders. Unity or heterogeneity? J Affect Disord, 
106(3), 229-240. doi: 10.1016/j.jad.2007.07.001 
 
Ekman, C. J., Lind, J., Ryden, E., Ingvar, M., & Landen, M. (2010). Manic episodes are 
associated with grey matter volume reduction - a voxel-based morphometry brain analysis. Acta 
Psychiatr Scand, 122(6), 507-515. doi: 10.1111/j.1600-0447.2010.01586.x 
 
Franke, K., & Gaser, C. (2019). Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain 
Aging: What Insights Have We Gained? Front Neurol, 10, 789. doi: 10.3389/fneur.2019.00789 
 
Garcia-Garcia, I., Michaud, A., Dadar, M., Zeighami, Y., Neseliler, S., Collins, D. L., . . . Dagher, 
A. (2019). Neuroanatomical differences in obesity: meta-analytic findings and their validation in 
an independent dataset. Int J Obes (Lond), 43(5), 943-951. doi: 10.1038/s41366-018-0164-4 
 
Gigante, A. D., Bond, D. J., Lafer, B., Lam, R. W., Young, L. T., & Yatham, L. N. (2012). Brain 
glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar 
disorder: a meta-analysis. Bipolar Disorders, 14(5), 478–487. http://doi.org/10.1111/j.1399-
5618.2012.01033.x 
 
Gitlin, M. J., Swendsen, J., Heller, T. L., & Hammen, C. (1995). Relapse and impairment in 
bipolar disorder. Am J Psychiatry, 152(11), 1635-1640. doi: 10.1176/ajp.152.11.1635 
 
Goldberg, J. F., Harrow, M., & Whiteside, J. E. (2001). Risk for bipolar illness in patients initially 
hospitalized for unipolar depression. Am J Psychiatry, 158(8), 1265-1270. doi: 
10.1176/appi.ajp.158.8.1265 
 
Goodwin, G. M., Anderson, I., Arango, C., Bowden, C. L., Henry, C., Mitchell, P. B., . . . 
Wittchen, H. U. (2008). ECNP consensus meeting. Bipolar depression. Nice, March 2007. Eur 
Neuropsychopharmacol, 18(7), 535-549. doi: 10.1016/j.euroneuro.2008.03.003 
 
Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. Lancet, 387(10027), 
1561-1572. doi: 10.1016/S0140-6736(15)00241-X\ 
 
Green, M. F. (2016). Impact of cognitive and social cognitive impairment on functional outcomes 
in patients with schizophrenia. J Clin Psychiatry, 77 Suppl 2, 8-11. doi: 
10.4088/JCP.14074su1c.02 
 
Gutman, B. A., Fletcher, P. T., Cardoso, M. J., Fleishman, G. M., Lorenzi, M., Thompson, P. M., 
& Ourselin, S. (2015). A Riemannian Framework for Intrinsic Comparison of Closed Genus-Zero 
Shapes. Inf Process Med Imaging, 24, 205-218. doi: 10.1007/978-3-319-19992-4_16 
 



Gutman, B. A., van Erp T. G. M., Alber, K., Ching, C. R. K., Isaev, D., Jahanshad, N., . . . Wang, 
L. (2019). Meta-analysis of deep brain structural shape and asymmetry in schizophrenia via 
ENIGMA. Submitted to Human Brain Mapping. 
 
Hajek, T., Bauer, M., Pfennig, A., Cullis, J., Ploch, J., O'Donovan, C., . . . Alda, M. (2012). Large 
positive effect of lithium on prefrontal cortex N-acetylaspartate in patients with bipolar disorder: 
2-centre study. J Psychiatry Neurosci, 37(3), 185-192. doi: 10.1503/jpn.110097 
 
Hajek, T., Calkin, C., Blagdon, R., Slaney, C., Uher, R., & Alda, M. (2014). Insulin resistance, 
diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology, 39(12), 
2910-2918. doi: 10.1038/npp.2014.148 
 
Hajek, T., Carrey, N. and Alda, M. (2005), Neuroanatomical abnormalities as risk factors for 
bipolar disorder. Bipolar Disorders, 7: 393-403. doi: https://doi.org/10.1111/j.1399-
5618.2005.00238.x 
 
Hajek, T., Kopecek, M., Hoschl, C., & Alda, M. (2012). Smaller hippocampal volumes in patients 
with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci, 
37(5), 333-343. doi: 10.1503/jpn.110143 
 
Hallahan, B., Newell, J., Soares, J. C., Brambilla, P., Strakowski, S. M., Fleck, D. E., . . . 
McDonald, C. (2011). Structural magnetic resonance imaging in bipolar disorder: an 
international collaborative mega-analysis of individual adult patient data. Biol Psychiatry, 69(4), 
326-335. doi: 10.1016/j.biopsych.2010.08.029 
 
Han, L. K. M., Dinga, R., Hahn, T., Ching, C. R. K., Eyler, L. T., Aftanas, L., . . . Schmaal, L. 
(2020). Brain aging in major depressive disorder: results from the ENIGMA major depressive 
disorder working group. Mol Psychiatry. doi:10.1038/s41380-020-0754-0 
 
Hanford, L. C., Nazarov, A., Hall, G. B., & Sassi, R. B. (2016). Cortical thickness in bipolar 
disorder: a systematic review. Bipolar Disord, 18(1), 4-18. doi: 10.1111/bdi.12362 
 
Harrison, P. J., Colbourne, L., & Harrison, C. H. (2018). The neuropathology of bipolar disorder: 
Systematic review and meta-analysis. Molecular Psychiatry, 1–22. 
https://doi.org/10.1038/s41380-018-0213-3 
 
Haukvik, U. K., Westlye, L. T., Morch-Johnsen, L., Jorgensen, K. N., Lange, E. H., Dale, A. M., 
… Agartz, I. (2015). In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. 
Biological Psychiatry, 77(6), 581–588. https://doi.org/10.1016/j.biopsych.2014.06.020 
 
Haukvik, Unn K., Tamnes, C. K., Söderman, E., & Agartz, I. (2018). Neuroimaging hippocampal 
subfields in schizophrenia and bipolar disorder: A systematic review and meta-analysis. Journal 
of Psychiatric Research, 104, 217–226. https://doi.org/10.1016/j.jpsychires.2018.08.012 
 



Haukvik, U. K., Gurholt, T. P., Nerland, S., Elvsåshagen, T., Akudjedu, T. N., Alda, M., … for the 
ENIGMA Bipolar Disorder Working group. (2020). In vivo hippocampal subfield volumes in 
bipolar disorder – A mega-analysis from the ENIGMA consortium. Submitted to Human Brain 
Mapping 
 
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., ... & 
Abajian, C. (2012). An anatomically comprehensive atlas of the adult human brain 
transcriptome. Nature, 489(7416), 391. 
 
Hibar, D. P., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., . . . 
Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Mol 
Psychiatry, 21(12), 1710-1716. doi: 10.1038/mp.2015.227 
 
Hibar, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., . . . 
Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 
individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry, 23(4), 932-942. 
doi: 10.1038/mp.2017.73 
 
Ho, B. C., Andreasen, N. C., Ziebell, S., Pierson, R., & Magnotta, V. (2011). Long-term 
antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. 
Arch Gen Psychiatry, 68(2), 128-137. doi: 10.1001/archgenpsychiatry.2010.199 
 
Ho, T. C., Gutman, B., Pozzi, E., Grabe, H. J., Hosten, N., Wittfeld, K., . . . Schmaal, L. (2020). 
Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major 
depressive disorder working group. Human Brain Mapping. doi:10.1002/hbm.24988 
 
Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., … 
Alzheimer’s Disease Neuroimaging, I. (2015). A computational atlas of the hippocampal 
formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in 
vivo MRI. NeuroImage, 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042 
 
Janiri, D., Simonetti, A., Piras, F., Ciullo, V., Spalletta, G., & Sani, G. (2019). Predominant 
polarity and hippocampal subfield volumes in Bipolar disorders. Bipolar Disorders, n/a(n/a). 
https://doi.org/10.1111/bdi.12857 
 
Janowsky, D. S., Davis, J. M., El-Yousef, M. K., & Sekerke, H. J. (1972). a Cholinergic-
Adrenergic Hypothesis of Mania and Depression. The Lancet, 300(7778), 632–635. doi: 
https://doi.org/10.1016/S0140-6736(72)93021-8 
 
Jeurissen, B., Leemans, A., Jones, D. K., Tournier, J., & Sijbers, J. (2011). Probabilistic Fiber 
Tracking Using the Residual Bootstrap with Constrained Spherical Deconvolution, 479, 461–
479. doi: https://doi.org/10.1002/hbm.21032 
 



Judd, L. L., & Akiskal, H. S. (2003). The prevalence and disability of bipolar spectrum disorders 
in the US population: re-analysis of the ECA database taking into account subthreshold cases. J 
Affect Disord, 73(1-2), 123-131. doi: 10.1016/s0165-0327(02)00332-4 
 
Kaufmann, T., van der Meer, D., Doan, N. T., Schwarz, E., Lund, M. J., Agartz, I., . . . Westlye, 
L. T. (2019). Common brain disorders are associated with heritable patterns of apparent aging 
of the brain. Nat Neurosci, 22(10), 1617-1623. doi: 10.1038/s41593-019-0471-7 
  
Keck, P. E., Jr., Kessler, R. C., & Ross, R. (2008). Clinical and economic effects of 
unrecognized or inadequately treated bipolar disorder. J Psychiatr Pract, 14 Suppl 2, 31-38. doi: 
10.1097/01.pra.0000320124.91799.2a 
 
Kolenic, M., Franke, K., Hlinka, J., Matejka, M., Capkova, J., Pausova, Z., . . . Hajek, T. (2018). 
Obesity, dyslipidemia and brain age in first-episode psychosis. J Psychiatr Res, 99, 151-158. 
doi: 10.1016/j.jpsychires.2018.02.012 
 
Kozicky, J. M., Torres, I. J., Silveira, L. E., Bond, D. J., Lam, R. W., & Yatham, L. N. (2014). 
Cognitive change in the year after a first manic episode: association between clinical outcome 
and cognitive performance early in the course of bipolar I disorder. J Clin Psychiatry, 75(6), 
e587-593. doi: 10.4088/JCP.13m08928 
 
Kraguljac, N. V., Reid, M., White, D., Jones, R., Hollander, den, J., Lowman, D., & Lahti, A. C. 
(2012). Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-
analysis. Psychiatry Research, 203(2-3), 111–125. 
http://doi.org/10.1016/j.pscychresns.2012.02.003 
 
Lewandowski, K. E., Sperry, S. H., Cohen, B. M., Norris, L. A., Fitzmaurice, G. M., Ongur, D., & 
Keshavan, M. S. (2017). Treatment to Enhance Cognition in Bipolar Disorder (TREC-BD): 
Efficacy of a Randomized Controlled Trial of Cognitive Remediation Versus Active Control. J 
Clin Psychiatry, 78(9), e1242-e1249. doi: 10.4088/JCP.17m11476 
 
Lett, T. A., Waller, L., Tost, H., Veer, I. M., Nazeri, A., Erk, S., . . . Walter, H. (2017). Cortical 
surface-based threshold-free cluster enhancement and cortexwise mediation. Hum Brain Mapp, 
38(6), 2795-2807. doi: 10.1002/hbm.23563 
 
Martinez-Aran, A., & Vieta, E. (2015). Cognition as a target in schizophrenia, bipolar disorder 
and depression. Eur Neuropsychopharmacol, 25(2), 151-157. doi: 
10.1016/j.euroneuro.2015.01.007 
 
Nabulsi, L., McPhilemy, G., Kilmartin, L., O’Hora, D., O’Donoghue, S., Forcellini, G., . . . 
Cannon, D. M. (2019). Bipolar Disorder and Gender are Associated with Fronto-limbic and 
Basal Ganglia Dysconnectivity: A Study of Topological Variance Using Network Analysis. Brain 
Connectivity. doi: https://doi.org/10.1089/brain.2019.0667 
 



Najt, P., Wang, F., Spencer, L., Johnston, J. A., Cox Lippard, E. T., Pittman, B. P., . . . 
Blumberg, H. P. (2016). Anterior Cortical Development During Adolescence in Bipolar Disorder. 
Biol Psychiatry, 79(4), 303-310. doi: 10.1016/j.biopsych.2015.03.026 
 
Nunes, A., Schnack, H. G., Ching, C. R. K., Agartz, I., Akudjedu, T. N., Alda, M., . . . Group, E. 
B. D. W. (2018). Using structural MRI to identify bipolar disorders - 13 site machine learning 
study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry. 
doi: 10.1038/s41380-018-0228-9 
 
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, 
M., . . . Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical 
thickness. Cereb Cortex, 19(11), 2728-2735. doi: 10.1093/cercor/bhp026 
 
Patel, Y., Shin, J., Gowland, P. A., Pausova, Z., Paus, T., & IMAGEN consortium. (2018). 
Maturation of the human cerebral cortex during adolescence: myelin or dendritic arbor? 
Cerebral Cortex, 29(8), 3351-3362. 
 
Passos, I. C., Ballester, P. L., Barros, R. C., Librenza-Garcia, D., Mwangi, B., Birmaher, B., . . . 
Kapczinski, F. (2019). Machine learning and big data analytics in bipolar disorder: A position 
paper from the International Society for Bipolar Disorders Big Data Task Force. Bipolar Disord, 
21(7), 582-594. doi: 10.1111/bdi.12828 
 
Passos, I. C., Mwangi, B., Vieta, E., Berk, M., & Kapczinski, F. (2016). Areas of controversy in 
neuroprogression in bipolar disorder. Acta Psychiatr Scand, 134(2), 91-103. doi: 
10.1111/acps.12581 
 
Paus, T. (2018). Imaging microstructure in the living human brain: A viewpoint. Neuroimage, 
182, 3-7. doi: 10.1016/j.neuroimage.2017.10.013 
 
Perlis, R. H., Ostacher, M. J., Patel, J. K., Marangell, L. B., Zhang, H., Wisniewski, S. R., . . . 
Thase, M. E. (2006). Predictors of recurrence in bipolar disorder: primary outcomes from the 
Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am J Psychiatry, 
163(2), 217-224. doi: 10.1176/appi.ajp.163.2.217 
 
Perry, A., Roberts, G., Mitchell, P. B., & Breakspear, M. (2018). Connectomics of bipolar 
disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. 
Molecular Psychiatry. doi: https://doi.org/10.1038/s41380-018-0267-2 
 
Pompili, M., Gonda, X., Serafini, G., Innamorati, M., Sher, L., Amore, M., . . . Girardi, P. (2013). 
Epidemiology of suicide in bipolar disorders: a systematic review of the literature. Bipolar 
Disord, 15(5), 457-490. doi: 10.1111/bdi.12087 
 



Quiroz, J. A., Machado-Vieira, R., Zarate, C. A., Jr., & Manji, H. K. (2010). Novel insights into 
lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology, 
62(1), 50-60. doi: 10.1159/000314310 
 
Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template 
estimation for unbiased longitudinal image analysis. Neuroimage, 61(4), 1402-1418. doi: 
10.1016/j.neuroimage.2012.02.084 
 
Rizzo, L. B., Costa, L. G., Mansur, R. B., Swardfager, W., Belangero, S. I., Grassi-Oliveira, R., . 
. . Brietzke, E. (2014). The theory of bipolar disorder as an illness of accelerated aging: 
implications for clinical care and research. Neurosci Biobehav Rev, 42, 157-169. doi: 
10.1016/j.neubiorev.2014.02.004 
 
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in 
depression: a systematic review and meta-analysis. Psychol Med, 44(10), 2029-2040. doi: 
10.1017/S0033291713002535 
 
Romeo, B., Choucha, W., Fossati, P., & Rotge, J.-Y. (2018). Meta-analysis of central and 
peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. Journal of 
Psychiatry & Neuroscience : JPN, 43(1), 58–66. 
 
Rosa, A. R., Gonzalez-Ortega, I., Gonzalez-Pinto, A., Echeburua, E., Comes, M., Martinez-
Aran, A., . . . Vieta, E. (2012). One-year psychosocial functioning in patients in the early vs. late 
stage of bipolar disorder. Acta Psychiatr Scand, 125(4), 335-341. doi: 10.1111/j.1600-
0447.2011.01830.x 
 
Sanchez-Moreno, J., Bonnin, C., Gonzalez-Pinto, A., Amann, B. L., Sole, B., Balanza-Martinez, 
V., . . . Group, C. F. R. (2017). Do patients with bipolar disorder and subsyndromal symptoms 
benefit from functional remediation? A 12-month follow-up study. Eur Neuropsychopharmacol, 
27(4), 350-359. doi: 10.1016/j.euroneuro.2017.01.010 
 
Savitz, J. B., Rauch, S. L., & Drevets, W. C. (2013). Clinical application of brain imaging for the 
diagnosis of mood disorders: the current state of play. Mol Psychiatry, 18(5), 528-539. doi: 
10.1038/mp.2013.25 
 
Schaffer, A., Isometsa, E. T., Tondo, L., D, H. M., Turecki, G., Reis, C., . . . Yatham, L. N. 
(2015). International Society for Bipolar Disorders Task Force on Suicide: meta-analyses and 
meta-regression of correlates of suicide attempts and suicide deaths in bipolar disorder. Bipolar 
Disord, 17(1), 1-16. doi: 10.1111/bdi.12271 
 
Schmaal, L., Veltman, D. J., van Erp, T. G., Samann, P. G., Frodl, T., Jahanshad, N., . . . Hibar, 
D. P. (2016). Subcortical brain alterations in major depressive disorder: findings from the 
ENIGMA Major Depressive Disorder working group. Mol Psychiatry, 21(6), 806-812. doi: 
10.1038/mp.2015.69 



 
Schneider, M. R., DelBello, M. P., McNamara, R. K., Strakowski, S. M., & Adler, C. M. (2012). 
Neuroprogression in bipolar disorder. Bipolar Disord, 14(4), 356-374. doi: 10.1111/j.1399-
5618.2012.01024.x 
 
Schür, R. R., Draisma, L. W. R., Wijnen, J. P., Boks, M. P., Koevoets, M. G. J. C., Joëls, M., et 
al. (2016). Brain GABA levels across psychiatric disorders: A systematic literature review and 
meta-analysis of (1) H-MRS studies. Human Brain Mapping, 37(9), 3337–3352. 
http://doi.org/10.1002/hbm.23244 
 
Shin, J., French, L., Xu, T., Leonard, G., Perron, M., Pike, G. B., ... & Paus, T. (2017). Cell-
specific gene-expression profiles and cortical thickness in the human brain. Cerebral Cortex, 
28(9), 3267-3277. 
 
Silverstone, P. H., McGrath, B. M., & Kim, H. (2005). Bipolar disorder and myo-inositol: a review 
of the magnetic resonance spectroscopy findings. Bipolar Disorders, 7(1), 1–10. 
http://doi.org/10.1111/j.1399-5618.2004.00174.x 
 
Solomon, D. A., Keitner, G. I., Miller, I. W., Shea, M. T., & Keller, M. B. (1995). Course of illness 
and maintenance treatments for patients with bipolar disorder. J Clin Psychiatry, 56(1), 5-13. 
 
Sparding, T., Silander, K., Palsson, E., Ostlind, J., Sellgren, C., Ekman, C. J., . . . Landen, M. 
(2015). Cognitive functioning in clinically stable patients with bipolar disorder I and II. PLoS One, 
10(1), e0115562. doi: 10.1371/journal.pone.0115562 
 
Sparding, T., Silander, K., Palsson, E., Ostlind, J., Ekman, C. J., Sellgren, C. M., . . . Landen, M. 
(2017). Classification of cognitive performance in bipolar disorder. Cogn Neuropsychiatry, 22(5), 
407-421. doi: 10.1080/13546805.2017.1361391 
 
Stahl, E. A., Breen, G., Forstner, A. J., McQuillin, A., Ripke, S., Trubetskoy, V., . . . Bipolar 
Disorder Working Group of the Psychiatric Genomics, C. (2019). Genome-wide association 
study identifies 30 loci associated with bipolar disorder. Nat Genet, 51(5), 793-803. doi: 
10.1038/s41588-019-0397-8 
 
Strakowski, S. M., Adler, C. M., Almeida, J., Altshuler, L. L., Blumberg, H. P., Chang, K. D., … 
Townsend, J. D. (2012). The functional neuroanatomy of bipolar disorder: A consensus model. 
Bipolar Disorders, 14(4), 313–325. doi: https://doi.org/10.1111/j.1399-5618.2012.01022.x 
 
Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E., Thomopoulos, S., . . . 
PsyArXiv Preprints (2019). ENIGMA and Global Neuroscience: A Decade of Large-Scale 
Studies of the Brain in Health and Disease across more than 40 Countries as a neural correlate 
of treatment. doi: 10.31234/osf.io/qnsh7 
 



Toma, C., Shaw, A. D., Allcock, R. J. N., Heath, A., Pierce, K. D., Mitchell, P. B., . . . Fullerton, 
J. M. (2018). An examination of multiple classes of rare variants in extended families with 
bipolar disorder. Transl Psychiatry, 8(1), 65. doi: 10.1038/s41398-018-0113-y 
 
Torres, I. J., DeFreitas, V. G., DeFreitas, C. M., Kauer-Sant'Anna, M., Bond, D. J., Honer, W. 
G., . . . Yatham, L. N. (2010). Neurocognitive functioning in patients with bipolar I disorder 
recently recovered from a first manic episode. J Clin Psychiatry, 71(9), 1234-1242. doi: 
10.4088/JCP.08m04997yel 
 
Vazquez, G. H., Holtzman, J. N., Lolich, M., Ketter, T. A., & Baldessarini, R. J. (2015). 
Recurrence rates in bipolar disorder: Systematic comparison of long-term prospective, 
naturalistic studies versus randomized controlled trials. Eur Neuropsychopharmacol, 25(10), 
1501-1512. doi: 10.1016/j.euroneuro.2015.07.013 
 
van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. 
A., . . . Turner, J. A. (2016). Subcortical brain volume abnormalities in 2028 individuals with 
schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry, 21(4), 
585. doi: 10.1038/mp.2015.118 
 
Van Gestel, H., Franke, K., Petite, J., Slaney, C., Garnham, J., Helmick, C., . . . Hajek, T. 
(2019). Brain age in bipolar disorders: Effects of lithium treatment. Aust N Z J Psychiatry, 
53(12), 1179-1188. doi: 10.1177/0004867419857814 
 
Vieta, E., Berk, M., Schulze, T. G., Carvalho, A. F., Suppes, T., Calabrese, J. R., . . . Grande, I. 
(2018). Bipolar disorders. Nat Rev Dis Primers, 4, 18008. doi: 10.1038/nrdp.2018.8 
 
Vernon, A. C., Natesan, S., Crum, W. R., Cooper, J. D., Modo, M., Williams, S. C., & Kapur, S. 
(2012). Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic 
resonance imaging study with postmortem confirmation. Biol Psychiatry, 71(10), 855-863. doi: 
10.1016/j.biopsych.2011.12.004 
 
Weathers, J., Lippard, E. T. C., Spencer, L., Pittman, B., Wang, F., & Blumberg, H. P. (2018). 
Longitudinal Diffusion Tensor Imaging Study of Adolescents and Young Adults With Bipolar 
Disorder. J Am Acad Child Adolesc Psychiatry, 57(2), 111-117. doi: 10.1016/j.jaac.2017.11.014 
 
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., . . . Glahn, D. C. 
(2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for 
imaging genetics studies. Neuroimage, 53(3), 1135-1146. doi: 
10.1016/j.neuroimage.2009.12.028 
 
Woelbert, E., Kirtley, A., Balmer, N., Dix, S. (2019). How much is spent on mental health 
research: developing a system for categorising grant funding in the U.K. The Lancet Psychiatry, 
6(5), 445-452. Doi: https://doi.org/10.1016/S2215-0366(19)30033-1 
 



Yatham, L. N., Mackala, S., Basivireddy, J., Ahn, S., Walji, N., Hu, C., . . . Torres, I. J. (2017). 
Lurasidone versus treatment as usual for cognitive impairment in euthymic patients with bipolar 
I disorder: a randomised, open-label, pilot study. Lancet Psychiatry, 4(3), 208-217. doi: 
10.1016/S2215-0366(17)30046-9 
 
Yildiz-Yesiloglu, A., & Ankerst, D. P. (2006). Neurochemical alterations of the brain in bipolar 
disorder and their implications for pathophysiology: a systematic review of the in vivo proton 
magnetic resonance spectroscopy findings. Progress in Neuro-Psychopharmacology & 
Biological Psychiatry, 30(6), 969–995. http://doi.org/10.1016/j.pnpbp.2006.03.012 
 
Yüksel, C., & Ongur, D. (2010). Magnetic resonance spectroscopy studies of glutamate-related 
abnormalities in mood disorders. Biological Psychiatry, 68(9), 785–794. 
http://doi.org/10.1016/j.biopsych.2010.06.016 
 
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., & Breakspear, M. 
(2016). Connectome sensitivity or specificity: which is more important? NeuroImage, 142, 407–
420. doi: https://doi.org/10.1016/j.neuroimage.2016.06.035 
 
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. 
(2010). Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage, 
50(3), 970–983. doi: https://doi.org/10.1016/j.neuroimage.2009.12.027 
 
Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., & Gong, Q. (2011). Disrupted brain 
connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry, 
70(4), 334-342. doi: 10.1016/j.biopsych.2011.05.018 
 


